Понятие минерализации почвы. Минерализация почвы с оставлением семенников и семенных куртин Какие почвы бывают сильно минерализованными

Показатели окультуренности

Оптимальные значения

Переувлажнение пахотного слоя в вегетационный период, дни.

Отсутствует или для многолетних трав – не более 20, зерновых – не более 3

Мощность пахотного слоя

Выравненность поверхности

Замкнутые микрозападины и микроповышения

на отрезке 5м – не более 5см.

Плотность сложения пахотного слоя, г/см 3

Для яровых зерновых – 1,1–1,3; однолетних трав – 1,0–1,3; свеклы и картофеля – 1,0–1,2; многолетних трав –1,1–1,25

Влажность почвы в слое 0–50 см, % от ПВ

50–70 – под зерновые, 55–75 – под многолетние травы, 55–70 – под корнеплоды и технические культуры

Коэффициент структурности

Азот (NO 3 + NH 4) мг/кг почвы.

Фосфор подвижный по Кирсанову, мг/кг почвы

Калий обменный, мг/кг почвы

Обменный основания, мг-экв/кг почвы

Не менее 150–200, отсутствия подвижного алюминия

Эти показатели имеют динамичный характер, что связано с погодными условиями, степенью увлажнения и почвенным покровом, способом использования земли.

Мощность пахотного слоя. Основная задача при создании глубокого однородного пахотного слоя это улучшение его физических свойств и повышение эффективного плодородия почвы.

Исследования научных учреждений и опыт хозяйств по созданию и окультуриванию минеральных почв различного гранулометрического состава подтверждают, что чем глубже пахотный слой, тем выше и устойчивее урожаи. Пахотный слой в 30–40 см может поглотить и удерживать без переувлажнения 30–50% талых вод и полностью ливневые осадки – 50–60 мм. С увеличением мощности пахотного слоя только на один сантиметр масса возрастает на 120–130 т/га с увеличением органического вещества до трех тонн. При глубокой обработке быстрее и больше проникает влаги в нижележащие слои, повышается температура взрыхленного слоя, лучше происходит газообмен. На тяжелых дерново-подзолистых глееватых почвах при глубокой обработке оптимальное содержание воздуха в весенний период устанавливалось на 20–22 дня раньше, по отношению к обычной вспашке, что особенно важно для озимых культур. Рыхление подпахотного слоя способствует большему выделению углекислого газа. С увеличением мощности пахотного слоя на один сантиметр объем общей пористости увеличивается на 50–55 м 3 /га.

Мощный окультуренный пахотный слой имеет большое гидромелиоративное значение. С повышением коэффициента фильтрации и влагоемкости почвы сокращается объём стока и тем самым повысить действие осушительных систем и уменьшить вынос питательных веществ. Увеличение мощности пахотного слоя с 15–20 до 25–30 см коэффициент фильтрации на суглинистых почвах повышается с 1,0–1,5 до 2,0–3,0, глинистых – от 0,5 до 2–3 метра в сутки. В мощном пахотном слое создаются и более благоприятные условия для развития микроорганизмов и корневой системы полевых культур. Семена сорняков заделанных на большую глубину медленно прорастают, а значительная часть их погибает. При глубокой подрезке корней сорных растений они быстрее отмирают. Глубокая заделка пожнивных остатков при хорошем оборачивании пласта исключается возможность появления вредителей и болезней на последующей культуре.

Растения по-разному реагируют на глубину пахотного слоя и глубину основной обработки. Хорошо отзываются на глубокую основную обработку почвы свекла, кукуруза, картофель, люцерна и клевер, вика, кормовые бобы, овощные культуры. Озимые зерновые, горох, ячмень, овес, гречиха культуры, средне отзывающие на глубокую обработку. К слабо отзывающимся или совсем не реагирующие не глубокую обработку относятся лен, яровая пшеница, люпин.

В связи с особым значением глубокого окультуривания пахотного слоя разработаны приемы углубления и окультуривания пахотного слоя. Мелиоративной вспашкой с интенсивным окультуриванием подзолистых почв можно создать однородный пахотный слой с глубиной около 30см. вместе с этим этот прием и особенно плантажная вспашка требует много времени и затрат. Поднятый на дневную поверхность иллювиальный горизонт водопрочен только во влажном состоянии. После многократного подсыхания и увлажнения осадками его структура разрушается, образуется бесструктурная заплывающая глина и при высыхании покрывается коркой, ухудшающей режимы почвы.

Применение двух- или трехярусной вспашки, как приема коренной переделки профиля, невозможно создать однородный по плодородию пахотный слой. В связи с большими затратами ярусной вспашки вряд ли этот прием может быть применен в широких масштабах.

Углубление пахотного горизонта путем постепенного припахивания нижнего слоя к пахотному заметно проявляется на фоне внесения достаточно высоких доз удобрений и извести. Лучше углублять пахотный слой во время зяблевой вспашки под культуры отзывчивые на углубление. Припаханную оподзоленную часть горизонта к пахотному следует перемешивать весной, перепашкой до 16 см с внесением органики.

Улучшение почвенного профиля мелкозалежных торфяников проводят с помощью нормативной вспашки совмещенной с образованием под вспаханным горизонтом взрыхленных полос. Это обеспечивает разуплотнение подплужной подошвы, водоудерживающей прослойки и создает временные щели и кротовины.

Технология создания мощного однородного по плодородию пахотного слоя тяжелых почв состоит из системы проведения послойной вспашки с ликвидацией подзолистого горизонта. Она предусматривает использование растительных остатков, которые служат биомелиоративной прослойкой по регулированию водного режима, с применением мелиоративной и обычной вспашки, рыхления, дискования, выравнивания поверхности.

Каждый из вышеописанных приемов имеет как положительные, так и отрицательные стороны. При проектировании систем приема по созданию мощного пахотного слоя всецело зависит от типа почвы.

Общие физические свойства почвы. Плотность твердой фазы почвы (удельная масса) – отношение массы ее твердой фазы к массе воды в том же объеме при +4 0 С. Величина постоянная. Значение ее изменяется в зависимости от величины гумуса и состава минеральной части почвы. Для дерново-подзолистых почв республики этот показатель колеблется от 2,40 до 2,65 г/см 3 для торфяно-болотных – от 0,5 до 1,4 г/см 3 .

Плотность почвы (объемная масса) – масса единицы объема абсолютно сухой почвы, взятой в естественном сложении, выражают в г/см 3 . Плотность влияет на режимы почвы и является величиной переменной, как в процессе окультуривания почвы, так и за сезонный период. После рыхления плотность почвы снижается, затем под влиянием осадков, своего веса она увеличивается и достигает равновесной плотности. Наилучшие условия для культур по плотности складываются тогда, когда значение оптимальной и равновесной плотности совпадают.

Повышенная плотность отрицательно влияет на водный режим, газообмен и биологическую активность почвы. От излишней плотности снижается полевая всхожесть семян, уменьшается глубина проникновение корней и их форма. Рост корневой системы при плотности почвы 1,4–1,55 г/см 3 затруднен, более 1,60 г/см 3 невозможен. Неблагоприятно и очень рыхлое сложение.

Пахотный слой считается рыхлым при плотности – 1,15, плотным – 1,15–1,35 и очень плотным – выше 1,35г/см 3 . Полевые культуры по разному относятся к уплотнению почвы. Картофель, кормовые корнеплоды, сахарная и столовая свекла хорошо растут и дают высокие урожаи только на рыхлых почвах. Отношение многолетних трав к плотности почвы зависит от возраста растений. Молодые растения бобовых и злаковых трав, особенно клевера красного, очень плохо переносят уплотнение верхнего слоя почвы. На второй и последующий годы жизни они могут произрастать и на сравнительно уплотненной почве. На рост растений влияет и плотность подпахотного горизонта

Оптимальные значения объемной массы на легкосуглинистых почвах для культур севооборота составляет для ячменя 1,15–1,25, для озимой ржи 1,20–1,30, овса 1,15–1,25, кормовых бобов 1,02–1,30, картофеля 1,00–1,20, кукурузы 1,10–1,40 г/см 3 .

Пористость (скважность) почвы . Промежутки между почвенными комочками, из которых состоит твердая фаза почвы, называются порами. Общий объем пор в процентах по отношению ко всему объему почвы называется пористостью или скважностью почвы. Различают некапиллярную и капиллярную пористость. Засчет некапиллярных пор происходит водопроницаемость и воздухообмен. Капиллярные поры определяют запас доступной для растений влаги. Если некапилярная пористость меньше 50%, то резко уменьшается воздухообмен, если она выше 65% снижается водоудерживающая способность почвы.

Соотношение объемов занимавших твердой фазой почвы и различными видами пор называется строением пахотного слоя почвы. Оптимальное соотношение объема твердой фазы почвы и общей скважности для почв тяжелого гранулометрического состава 40–35 и 60–65%, а легкого по объему твердой фазы почвы 50–55% и 45–50% общей скважности.

Строение почвы регулируют улучшением структуры и обработкой почвы. Приемы обработки повышают общую пористость, увеличивая объем некапилярных пор, что улучшает водно-воздушный режим почвы. Однако чрезмерная рыхлость почвы ведет к потере влаги, быстрой минерализации органического вещества. Возникает трудность заделки мелкосемянных культур, требующих неглубокой заделки семян – это лен, клевер, овощные, просо, многолетние травы, поэтому почву уплотняю катками.

Структура почвы . Основным фактором, определяющим сложение почв среднего и тяжелого гранулометрического состава и его устойчивость во времени, является механически прочная и водопрочная структура.

Способность почвы распадаться на агрегаты называется структурностью. Совокупность агрегатов различной величины, формы и качественного состава называется почвеннойструктурой. В зависимости от диаметра частиц различают глыбистую структуру – комки более 10 мм, макроструктура – от 0,25 до 10 мм, микроструктура – мене 0,25 мм. Наиболее встречаемые формы агрегатов – это зернистая, комковатая, глыбистая, пылеватая структура. В агрономическом отношении для пахотных земель наиболее ценной считается зернистая и комковатая с диаметром агрегатов от 0,25 до 10 мм.

Структурные почвы имеют развитые капиллярные поры, которые впитывают влагу, а промежутки между ними заполнены воздухом. Это усиливает развитие корней растений, работу микроорганизмов по разложению органических веществ до азотного и зольного питания. Структурные почвы не заплывают, имеют слабый поверхностный сток, не требуют больших усилий по обработке. Испарение из структурной почвы происходит медленно из-за широких промежутков между комочками, а отсюда и запас воды.

В бесструктурную почву влага впитывается медленно, а значительная её часть теряется вследствие поверхностного стока. Поверхность бесструктурной почвы при увлажнении заплывает, а при подсыхании уплотняется, образуя корку, газообмен между почвой и атмосферным воздухом нарушается.

Агрономически ценная структура характеризуется такими показателями как размер частиц, водопрочностью и позорностью агрегатов.

Водопрочность структуры называется ее способность противостоять размывающему действию воды. Почвы с высокой водопрочностью структуры длительное время сохраняют благоприятное сложение, достигнутое первое же обработкой. Опыты показали, что пахотный слой имеет устойчивое сложение, если содержит не менее 40–45% водопрочных агрегатов более 0,25 мм. При меньшем содержании водопрочных агрегатов почва быстро уплотняется под влиянием осадков. Структурная почва имеет рыхлое сложение, меньшую плотность и большую пористость, более 45%, размер агрегатов составляет 0,25–10 мм, внутри комков преобладают капиллярные промежутки, а между комками – крупные некапилярные. Даже при обильном увлажнении в структурной почве в порах между агрегатами сохраняется воздух, корни растений и аэробные микроорганизмы не ощущают его недостатка.

Структура почвы разрушается главным образом под влиянием механических, физико-химическим и биологических факторов. Механическое разрушение структуры происходит в самых верхних слоях, вызывается оно преимущественно почвообрабатывающими машинами; физико-химическое разрушения могут быть вызваны одновалентными катионами, попадающими в почву с осадками, удобрениями; биологические причины разрушения структуры связаны с микробиологическими процессами, при которых происходит разложение гумуса в агрегатах и их разрушениях.

Для создания агрономически ценной структуры и поддержания ее в водопрочном состоянии используют различные агротехнические приемы – посев много летних трав, внесение органических удобрений и известкование, осушение переувлажненных почв, способы обработки почв.

Возделываемые культуры также оказывают определенное влияние на структуру почвы, так на третьем году монокультуры ячменя коэффициент структурности пахотного слоя был равен 1,57, тимофеевки – 1,54 и кормовой свеклы 1,10. Чем выше общая масса корней в единицы объема, тем сильнее она влияет на расчленение слитной почвы на макроструктурные отдельности, действия которых можно сравнить с функцией клиньев. Так на почву многолетние травы существенно влияют только при урожае сена 40–50ц/га и выше, поскольку масса оставляемых корней пропорционально (или равна) массе надземной части. На характер накопления корневой массы большое влияние оказывает глубина заделки удобрений и способы обработки почвы. Гумусовые вещества, особенно свежеобразованные, обладая склеивающей способностью, оказывают большое влияние на образование агрономически ценной связной водопрочной и пористой структуры почвы.

Физико-механические свойства почвы. Пластичность – способность почвы под действием внешних сил сохранять форму. Проявляется при сильном увлажнении особенно на глинистых почвах.

Связность – способность почвы противостоять направленным на нее силам. Невысокую связность имеют песчаные и структурные почвы. Гумус в тяжелых суглинистых и глинистых почвах уменьшает их связность, в легких песчаных – несколько увеличивает.

Набухание – увеличение объема почвы при увлажнении, аусадка – сокращение объема почвы при высыхании. Песчаные почвы не набухают, глинистые и суглинистые в значительной степени. При изменении этих объемов поверхность почвы трескается, теряется влага, возможен разрыв корневой системы растений.

Спелость . Состояние почвы пригодной для обработки, т. е. когда связность мала и почва не прилипает к орудиям, хорошо крошится.

Твердость – это сопротивление почвы проникновению в нее на определенную глубину твердого тела. Высокая твердость признак плохих физико-химических и агрофизических свойств.

Удельное сопротивление – это усилие потраченное на подрезание пласта, оборот и трение о рабочую поверхность орудия, кг/см 2 . По величине удельного сопротивления почвы делят:

– легкие с удельным сопротивлением 0,2–0,35 кг/см 2 это песчаные, супесчаные и некоторые торфяные;

– суглинистые с удельным сопротивлением 0,35–0,55 кг/см 2 ;

– тяжелые почвы (глинистые) имеют удельное сопротивление 0,55–0,80 кг/см 2 .

Т а б л и ц а 2.2. Влияние механического состава почвы на удельное сопротивление

Приветствую всех любителей металлопоиска. Сейчас мы с вами поговорим о важном понятий, которым является минерализация почвы. Наверно новички уже сталкивались с этим понятием и кто то для себя не смог ответить на вопрос "Что же такое степень минерализаций?", "Что такое минерализаций?", "На что она влияет?", "как с ней бороться?" и тд. Вот сейчас мы попробуем ответить на эти достаточно простые вопросы и дать советы которые помогут вам при выборе металлоискателя и в дальнейшем при работе с ними. И так, минерализация - это наличие в почве электропроводящих примесей или магнитных примесей или магнитных примесей. Степень минерализаций может быть различной, например в одном месте степень минерализаций будет минимальной, то есть присутствие тех элементов о которых я сказал будет минимальной. В другом месте наоборот количество таких примесей будет большим. Что же ожидает поисковика в том или другом случае, там, где степень минерализаций будет минимальной искать будет легче всего. Многие металлоискатели не имею в своем комплексе настроек возможности балансировки детектора по грунту. Балансировка металлоискателей нужна что бы преодолевать существующую минерализацию и создавать условия для наиболее глубокого поиска. Там, где степень минерализаций мала Вы будете вести поиск на максимальной глубине, там, где степень минерализаций высока Вы будете терять в глубине обнаружения. Но те металлоискатели которые обладают балансировкой грунта, ручной или автоматической будут иметь преимущество перед теми металлоискателями которые таковой настройкой не обладают. Степень минерализаций может различаться регионально, то есть допустим в Подмосковье преимущественно низкая и близкая к средней степени минерализаций. Но если Вы уедете в другое место Вы можете столкнуться с тем что степень минерализаций достаточно высока. Поэтому выбирая свой обратите внимание на то обладает он возможностью балансировки по грунту и если можно уточните информацию о степени минерализаций в вашем регионе. Это очень поможет вам в дальнейшем каких-то проблем. Соответственно когда Вы выходите на поиск с металлоискателем, Вы обязаны настроиться на грунт, то есть отстроить металлоискатель. Если металлоискатель не обладает балансировкой грунта, то вам придется пожертвовать его чувствительностью, Вы будете снижать уровень чувствительности соответственно будете терять несколько сантиметров в глубине обнаружения. Если металлоискатель может настроиться на грунт в автоматическом или ручном режиме, то Вы балансируете его по текущему грунту и получаете предельно возможные на данном грунте значения глубины обнаружения. Вот что такое минерализация и те способы которые можно применить для борьбы с нею. Я желаю Вам удачи. Выбирая металлоискатель обязательно обращайте внимание на имеет ли он возможность балансировки по грунту или не имеет таковой. И получите по возможности информацию о степени минерализаций в тех местах и регионах где Вы собираетесь искать. Удачи. Встретимся.

Уже в процессе обработки почвы на лесокультурной площа­ди происходит механическое поранение верхних почвенных сло­ев, в результате чего с поверхности удаляются растения и их остатки и обнажается минеральная часть почвы и даже почвогрунта. Такого рода качественно изменённая поверхность лесо­культурной площади даже в случае частичной обработки почвы может становиться существенным препятствием для продвиже­ния огня при низовых пожарах.

В условиях сухих боров повышенная густота посадки культур сосны и повышенная густота стояния являются необходимым биологическим свойством боровых сосняков. Однако при этом происходит концентрация отмершего органического вещества (хвои, веточек, чешуек коры, т.е. опада), дающего пищу огню при низовом пожаре. Поэтому предупредительным мероприятием против пожаров внутри насаждений сухого бора являетсярыхле­ние междурадий, в результате которого неразложившаяся сухая подстилка и опад, перемешиваясь с минеральными частицами почвы, теряют огнеопасные свойства и быстрее разлагаются. Та­кое рыхление желательно проводить через 2–3 года. Если же в период между рыхлением возникает беглый пожар, то действие его и последствия менее опасны (Шмидт, 1948).

Осуществляя минерализацию почвы путём рыхления между­рядий, опашки молодняков сосны, а также путём прокладки минерализованных полос и противопожарных канав, фактически проводят работу по созданию простейших противопожарных ба­рьеров. Их функционирование надо рассматривать как действен­ный приём профилактики тушения лесных пожаров.

Минерализованные полосы – это очищенные от лесных горю­чих материалов до минерального слоя почвы или обработанные почвообрабатывающими орудиями или иным способом линейные участки территории. Основное назначение – задержи­вать распространение низового пожара или служить опорной линией при отжиге и пуске встречного огня. Минерализованные полосы – это участки территорий, с которых удалены практи­чески все группы наземных лесных горючих материалов. Они яв­ляются основным профилактическим мероприятием, направлен­ным против проникновения огня на лесокультурные площади. Минерализованные полосы могут быть самостоятельным проти­вопожарным барьером или входить в состав более сложного про­тивопожарного барьера в качестве его элемента.

Минерализованные полосы можно создавать почвообрабатыва­ющими орудиями общего и специального назначения – плугами ПКЛ-70, ПЛП-135, сельскохозяйственными плугами, лесными фрезами, бульдозерами, специальными тракторными полосопро-ювдывателями ПФ-1, тракторными и ручными грунтомётами. Вид орудия определяется в каждом конкретном случае. Образуются ми­нерализованные полосы и при трелёвке древесины по трелёвоч­ным волокам, проложенным в насаждениях при проведении рубок ухода, что необходимо учитывать и использовать при разработке плана прокладки минерализованных полос. Действующими прави­лами по охране лесов от пожаров установлена только минимальная ширина защитной минерализованной полосы – 1,4 м. Она создаёт­ся за один проход двухотвального плуга ПКЛ-70.

Минерализованная полоса может «работать», т. е. задерживать продвижение низового огня только до накопления на её поверх­ности нового слоя горючих материалов. Поэтому необходимо пре­дусматривать проведение систематического ухода за минерализо­ванными полосами, их подновление и восстановление. Обычно, если минерализованная полоса создана весной, уход за ней про­водят осенью, а на следующий год - весной и осенью.

Количество уходов зависит от местных лесорастительных усло­вий и способа создания полос; может быть достаточным и один уход за пожароопасный сезон. При уходе используются те же ору­дия, которыми устраиваются полосы. Например, уход за полоса­ми, созданными плугом ПКЛ-70, можно делать дисковыми лес­ными культиваторами. При разработке генпланов противопожар­ного устройства лесов определяется общая потребность в минера­лизованных полосах по лесничествам и в целом по предприятиям.

Противопожарные канавы устраиваются для защиты ценных лесов от возможных подземных (торфяных) пожаров. Противопожарные канавы прокладывают по границам торфяников, на их территории и в насаждениях с заторфованными почвами; глуби­на канав – до минерального слоя грунта или до уровня грунто­вых вод. Роль противопожарных канав выполняют и осушитель­ные каналы при условии, если они заполнены водой. Сеть проти­вопожарных канав должна быть, как правило, замкнутой, чтобы не оставалось мест для прохода огня через слой торфа.

Находящиеся на территории лесфонда торфоперерабатываю-щие предприятия обязаны отделять эксплуатационную площадь торфяного месторождения от окружающих лесных массивов про­тивопожарным разрывом шириной 75–100 м. По внутреннему краю разрыва (от торфопредприятия) прокладывается водоотводящий канал, размеры которого (ширина по дну, по верху и глубине) определяются специальным проектом.

Противопожарные канавы прокладываются кана­вокопателями (при небольшой мощности торфяного слоя), экс­каваторами – на более мощных торфяниках, взрывным способом. Взрывные работы допускаются только при условии полного со­блюдения «Единых правил безопасности при ведении взрывных работ» и выполняются, как правило, специализированными орга­низациями. Глубина канав или каналов, прокладываемых в один проход плужными канавокопателями, составляет 0,6–1,2 м (в зави­симости от марки канавокопателя); ширина по дну – 0,2–0,4 м; ширина по верху – 1,5–2,8 м.

Естественное возобновление леса

Разработку лесосек следует вести с обязательным восстановлением леса на всех площадях вырубок. По окончании лесозаготовок должно быть обеспечено восстановление леса на площади вырубок хозяйственно ценными породами. К мерам содействия возобновлению леса относятся:

сохранение подроста в процессе лесозаготовок;

оставление обсеменителей;

подготовка почвы с учетом естественного налета семян;

простейшее поверхностное осушение почвы;

огораживание вырубок.

Сохранение подроста

Одним из основных мероприятий по восстановлению леса на вырубках является сохранение жизнеспособного подроста и молодняка хвойных и твердолиственных пород . В результате сохранения подроста при лесозаготовках время выращивания спелого леса сокращается на 10 - 20 лет, предотвращается смена хвойных пород лиственными, сокращаются трудозатраты на производство лесных культур .

К подросту относят жизнеспособное поколение главных пород, возобновившееся под основным пологом и не достигшее учетных размеров (не попадающее в перечет со ступени толщины 8 см). Самосев в возрасте до 2 лет при определении количества подроста не учитывают.

К молодняку относят жизнеспособные деревья низших ступеней толщины из подчиненной части основного полога древостоя, не входящие в перечет при отводе лесосек в рубку .

К нежизнеспособному подросту ели и пихты относят экземпляры, имеющие следующие признаки: прирост незначительный или отсутствует; зонтикообразная форма кроны; тонкие ветви (в большей части мертвые); живые ветви слабо охвоены; хвоя бледная или тусклая, мелкая.

Нежизнеспособный подрост сосны, кедра и лиственницы имеет невыраженные, тонкие, искривленные, вытянутые ветви, сероватой окраски стволики, мутовки, незначительное количество боковых побегов, укороченные годичные побеги, желтеющую хвою, расположенную небольшими пучками на концах ветвей, прирост, не превышающий по высоте 2 см в год.

Существующие лесоводственные требования к лесосечным работам на делянках с наличием подроста и молодняка изложены в Инструкции по сохранению подроста и молодняка . Жизнеспособный подрост учитывают одновременно с таксацией лесосек в соответствии с Правилами (см. разд. II).

Лесосеки с сохранившимся подростом принимают одновременно с освидетельствованием мест рубок, при этом только в бесснежный период. Данные о количестве сохранившегося подроста и площади, на которой он сохранен, заносят в акт освидетельствования.

Количество сохранившегося подроста учитывают только на площади пасек. Площадь, занятую пасечными и магистральными волоками, лесовозными дорогами, погрузочными площадками, складами, местами стоянок механизмов, обустройством и зонами безопасности, в расчет количества сохранившегося подроста на 1 га не включают; она должна занимать не более 25% общей площади делянки. В равнинных и горных лесах после окончания лесосечных работ должно сохраняться не менее 70% имевшегося количества подроста в зимнее время и 60% летом; в горных лесах на склонах более 10° - соответственно 60 и 50% .

Оставление обсеменителей

Оставление обсеменителей производится в соответствии с Правилами рубок главного пользования и является обязательным мероприятием на всех лесосеках, предназначенных для последующего естественного семенного возобновления. На лесосеках, намеченных под искусственное восстановление леса, а также с наличием достаточного для возобновления леса количества подроста хозяйственно ценных пород обсеменители не оставляют.

Обсеменители обычно оставляют в виде кулис, куртин (участками площадью более 0,1 га), групп (10 - 20 деревьев) и одиночных деревьев. Устойчивость кулис, куртин и групп, а также отдельных деревьев против ветра зависит от состава насаждения и почвенно-грунтовых условий. Наибольшей устойчивостью обладают сосновые и лиственничные семенники .

При разделении лесосеки на пасеки шириной 40 - 50 м семенники лучше оставлять в виде одиночных обсеменителей, семенных групп и куртин по границам пасек. Такое размещение обсеменителей не мешает при лесоразработках. Сложность заключается в том, что отмечать семенники в натуре следует не при отводе лесосек, а при подготовке делянки в рубку, после разбивки ее на пасеки. Объем древесины, оставленной на обсеменение вырубки, исключается из общего запаса на делянке, который установлен при отводе лесосек.

В сосновых и лиственничных лесах обсеменители оставляют в виде отдельных деревьев по 15 - 20 на 1 га или 5 - 10 семенных групп по 4 - 5 - 8 деревьев в каждой с расстоянием между ними не более 50 м. В еловых и пихтовых насаждениях, а также сосняках, произрастающих на мелких или избыточно увлажненных почвах оставляют семенные куртины овальной или квадратной формы площадью 0,25 га с расстоянием между ними от 100 - 150 до 250 м.

По границам пасек в сосняках и лиственничниках оставляют обычно одиночные обсеменители или небольшие группы из трех - пяти деревьев, располагая их на расстоянии 25 - 30 м друг от друга (около 15 шт/га). В еловых и смешанных лесах с преобладанием ели оставляют семенные куртины или группы, размещая их через пасеку на расстоянии 40 - 50 м друг от друга, т. е. 4 - 5 семенных групп или куртин на 1 га.

В качестве обсеменителей оставляют ветроустойчивые деревья I - II классов роста с хорошо развитой кроной. Семенные куртины подбирают на участках средневозрастных и приспевающих древостоев главных пород.

Оставление обсеменителей не дает эффекта в ельниках приручьевых, кисличниках и в сложных ельниках, сосняках-кисличниках, травяных и сложных, сосняках-долгомошниках и ельниках-долгомошниках, сосняках сфагновых и лишайниковых (в зоне южной тайги).

В качестве источника семян часто служат стены леса, которые могут дать значительное количество семян для успешного возобновления. Достаточное количество самосева ели и сосны появляется на расстоянии 50 - 60 м от стен леса. Наибольшее влияние стен леса на возобновление проявляется при узколесосечных сплошных рубках.

Минерализация поверхности почвы

Созданию лучших условий для прорастания семян и развития всходов способствует минерализация поверхности почвы . Поверхность почвы обрабатывают под пологом поступающих в рубку древостоев и на вырубках, где есть обсеменители - семенники, семенные куртины, стены леса. Обработка почвы под пологом леса эффективна только перед урожайным годом, за несколько лет до рубки насаждения. Минерализацию почвы под пологом леса целесообразно проводить в насаждениях полнотой не более 0,6; на вырубках в сосняках и ельниках-кисличниках, сосняках-долгомошниках и сфагновых этот способ нецелесообразен. Площадь с минерализованной поверхностью должна составлять не менее 20 - 30% площади участка леса или вырубки.

Обработку поверхности почвы на вырубках с почвами легкого механического состава проводят путем удаления подстилки и живого напочвенного покрова на полосах шириной 20 - 25 см, а также на небольших площадках. На вырубках с песчаными и супесчаными почвами почву обрабатывают на полосах шириной не менее 1 м или крупными площадками. На вырубках с влажными почвами создают микроповышения.

Обработку поверхности почвы для содействия естественному возобновлению леса осуществляют покровосдирателями ЯП-1, РЛ-1,8, ПЛ-1,2, рыхлителями ПСТ-2А и РЛД-2, культиваторами КЛБ-1,7. Кроме того, минерализацию легких почв можно осуществлять в процессе механизированной очистки лесосек сучкоподборщиками ПСГ-3 и ПС-5. Наиболее удобный период для проведения обработки почвы - конец лета или осень.

Огораживание вырубок

В тех случаях, когда естественному возобновлению леса препятствует пастьба скота, производят полное и ли частичное огораживание вырубок . На огороженных в целях содействия естественному возобновлению леса участках не разрешаются выпас скота, сенокошение и сбор подстилки.


Минеральная часть почвы возникла в результате выветривания горных пород и минералов верхних слоев литосферы и их превращений в процессе почвообразования. Это подтверждается сходством химического состава литосферы и почв. Под совокупным влиянием на минеральную природу физических и химических факторов, в особенности живых организмов (растений и микроорганизмов), произошли глубокие изменения, которые и привели к образованию на поверхности земной коры почвенного покрова.
Таким образом, «строителями» почвы являются растения и микроорганизмы, а также микро- и макрофауна, обитающая в почве, строительным же материалом - горные (материнские) породы и окружающая их атмосфера и гидросфера, а энергетическим источником почвообразования - солнечная энергия.
Почвы наследуют геохимические особенности почвообразующих пород. Например, богатство породы окисью кремния определяет и повышенное содержание его в почве, а избыток глинистых минералов отражается на преобладании их в генетических горизонтах почвы. На карбонатных породах развиваются почвы, обогащенные щелочно-земельными элементами, а на засоленных породах формируются засоленные почвы и т.д. Однако решающую роль в почвообразовании играет биологический фактор.
Под влиянием живых организмов в почве по сравнению с земной корой количество углерода увеличилось в 20 раз, а азота - в 10 раз. Это свидетельствует о том, что растения способствуют накоплению биологически важных элементов в почве. Почвообразование в естественных условиях протекает довольно медленно. С помощью удобрений и правильной агротехники интенсивность почвенных процессов можно значительно ускорить. Например, при применении удобрений усиливается жизнедеятельность не только растений, но и почвенной микрофлоры, что резко ускоряет процессы

накопления органических веществ и биологически важных элементов, т.е. повышается плодородие почвы.

б о
с/Ч “ Ф “ [ЗД]6"


Рис. 3.1. Группы соединений тетраэдров 8Ю4
В преобладающей части почв минеральную основу ее твердой фазы составляют кремнекислородные соединения. Самый распространенный минерал в почве - кварц (окись кремния). Алюминий и железо большей частью входят в состав алюмосиликатных и ферро- силикатных минералов. Атомы кремния в соединении с кислородом образуют прочносвязанные группы 8104, в которых кремний окружен в тетраэдрической координации четырьмя атомами кислорода. Так как кремний четырехвалентен, а кислород двухвалентен, то тетраэдр 8Ю4 имеет ненасыщенные валентности кислорода, его можно рассматривать как четырехзарядный анион. Весьма существенна способность тетраэдров 8Ю4 соединяться между собой с образованием групп из определенного числа атомов кремния и кислорода (рис. 3.1).
В структуре минералов тонкодисперсных фракций почв кремнекислородные тетраэдры соединены в слои, цепочки или изолированные группы тетраэдров 8Ю4, представляющие собой сложные анионные комплексы, так как у атома кислорода, не участвующего в соединении между собой двух 8Ю4-тетраэдров, остается свободная валентность или один отрицательный заряд. В
сложных сочетаниях из кремнекислородных тетраэдров часть атомов кремния может быть замещена атомами алюминия, что повышает ненасыщенность анионного радикала.
В кристаллической решетке кварца тетраэдр 8104 соединен через общие атомы кислорода с четырьмя другими тетраэдрами 8104 по схеме

Общая формула такого соединения (8Ю2)и. У полевых шпатов часть атомов кремния в подобной структуре замещается на алюминий, вследствие чего у такого кремнеалюмокислородного каркаса возникает отрицательный заряд, который компенсируется соответствующим количеством катионов натрия, кальция и других, располагающихся внутри каркаса, в «полостях» решетки. Например, полевой шпат альбит, имеющий общую формулу Ыа^АЮв], построен из связанных между собой кремнекислородных и алюмо- кислородных тетраэдров, причем на каждые три атома кремния приходится один атом алюминия и один ион натрия, нейтрализующий отрицательный заряд каркаса.
Алюминий в тетраэдрической координации с ионами кислорода или гидроксила образует октаэдрические группы, в которых ион алюминия окружен шестью ионами кислорода или гидроксила. Общая формула такого соединения (слоя) [А1(0Н)3]л соответствует составу минерала гиббсита (гидраргиллита), встречающегося в почве. Структуру подобных минералов можно записать следующим образом:
...[(ОН)зА12(ОН)з] л...[(ОН)зА12(ОН)з] ¦ и...[(ОН)3А12(ОН)3] л.
Формула показывает химический состав слоя (пакета), а точки - межпакетные промежутки.
В почвах встречаются первичные и вторичные минералы. К первичным относятся минералы, перешедшие из земной коры в почву в неизмененном или почти неизмененном виде. К ним можно отнести минералы почвенного скелета: кварц и его разновидности, полевые шпаты, в том числе плагиоклазы, слюды, роговые обманки, авгит, турмалин, магнетит, кальцит, доломит и др. Первичные минералы входят в состав материнских почвообразующих пород, возникших в результате выветривания и разрушения горных пород, из которых

слагается оболочка земной коры. В почвах эти минералы присутствуют в основном в виде частиц песчаной размерности (от

  1. 05 до 1,0 мм) и пылеватых частиц (от 0,001 до 0,05 мм). В незначительном количестве некоторые из них присутствуют в виде илистых (lt;0,001 мм) и коллоидных (lt;0,25 мкм) частиц.
Из первичных минералов под влиянием химических и физикохимических процессов (гидратации, гидролиза, окисления) и жизнедеятельности различных организмов в почве образуются гидраты полуторных окислов и кремнеземы, различные соли, а также вторичные минералы (минералы глин) - каолинит, монтмориллонит, гидрослюды и др. Они находятся в основном в виде илистых и коллоидных частиц и редко в виде пылеватых частиц, т.е. отличаются высокой дисперсностью.
В основе кристаллической решетки алюмосиликатных минералов мелкодисперсной фракции почв лежат сочетания из кремнекислородных тетраэдрических и алюмогидроксильных октаэдрических слоев.
У каолинита кристаллическая решетка образована пакетами из двух слоев, связанных между собой общими атомами кислорода: тетраэдрического кремнекислородного и октаэдрического алюмо- гидроксильного по типу
... п... ¦ п.
У монтмориллонита, гидрослюд пакет кристаллической решетки образован одним алюмогидроксильным слоем и двумя присоединенными к нему кремнекислородными по типу
... п... п...
У минералов каолинитовой группы связь между пакетами прочнее, межпакетные пространства небольшие. Взаимодействие микрокристаллических частиц с раствором в этом случае происходит только на внешней поверхности.
У минералов монтмориллонитовой группы межпакетные пространства больше, связь между пакетами непрочная, при увлажнении вода входит в межпакетные пространства. Поэтому в обмене на катионы почвенного раствора принимают участие катионы, расположенные как на поверхности частиц, так и находящиеся в межпакетных промежутках. Этим объясняется более высокая обменная поглотительная способность минералов монтмориллонитовой группы, а также наличие у них необменного поглощения катионов.
Почвенные глинистые минералы разделяются на четыре группы: монтмориллонитовые (монтмориллонит, бейделлит, нонтро- нит и др.), каолинитовые (каолинит и галлуазит), гидрослюды и минералы полуторных окислов (гематит, бемит, гидраргиллит, гётит и др.). Из вторичных минералов наивысшей поглотительной способностью обладают монтмориллонитовые, наименьшей - каолинит. Например, емкость поглощения каолинита в 8-15 раз меньше емкости поглощения монтмориллонита. Эта особенность минералов имеет существенное значение в поглощении удобрений и ее следует учитывать при их применении. Вторичные алюмосиликатные минералы в почве находятся в виде кристаллов, имеют высокую дисперсность, обладают большой поглотительной способностью.
В состав минеральной части почвы входят и аморфные вещества. Это гидраты окислов алюминия А120з*лН20 и железа Ре20з*лН20, а также гидраты кремнезема 8Ю2*иН20. Они могут кристаллизоваться. Минералы окислов и гидроксилов алюминия и железа встречаются в значительных количествах в красноземах и желтоземах.
По химическому составу минералы подразделяются на силикаты и алюмосиликаты. Из силикатов наиболее распространен кварц. Обычно в почвах его содержится более 60%, а в песчаных - выше 90%. Это химически инертный, стойкий и прочный минерал.
Алюмосиликаты представлены первичными и вторичными минералами. Из первичных больше всего полевых шпатов: калиевых (ортоклаз КА^зОв) и натриево-кальциевых (плагиоклазы). Слюд в почве меньше по сравнению с полевыми шпатами. Они содержат калий. Мусковит содержит много алюминия, а биотит - это железисто-магнезиальная слюда. Полевые шпаты и слюды постепенно разрушаются, освобождая калий, кальций, магний, железо и другие питательные элементы для растений.
Вторичные алюмосиликаты по химической природе относятся к гидроалюмосиликатам и подразделяются на три группы.
  1. Монтмориллониты (монтмориллонит - А128140ю(0Н)2 ^Н20, бейделлит - А1381з09(0Н)з‘лН20 и др.). Эта группа глин характеризуется высокой дисперсностью, набухаемостью, липкостью и вязкостью.
  2. Каолиниты (каолинит - А1281205(0Н)4 и галлуазит А1281205(0Н)4-2Н20). Эта группа глин менее дисперсна, обладает небольшой набухаемостью и липкостью. В дерново-подзолистых почвах и черноземах, сформированных на покровных суглинках, в составе высокодисперсных минералов преобладают монтмориллонит и гидрослюды. В красноземах, желтоземах и дерново-подзолистых почвах, образовавшихся на продуктах древнего гумидного выветривания гранита, в значительных количествах содержатся минералы каолинитовой группы.
  3. Гидрослюды (гидромусковит, гидробиотит, вермикулит) образуются из слюд, имеют непостоянный химический состав, по физическим свойствам занимают среднее положение между монтмориллонитом и каолинитом. Слюды определяют агрохимические и физические свойства почвы. Они являются источником калийного питания растений. Энергия поглощения калия коллоидами велика, вследствие чего в поглощающем комплексе многих почв его содержится 0,5-10 ммоль/100 г почвы. В некоторых почвах имеется недостаток калия, например в красноземах, латеритах, что объясняется малым содержанием в них слюд и гидрослюд и богатством почв минералами каолинитовой группы, которая почти не содержит калия.
Вторичные минералы имеют кристаллическую природу. К представителям слабо окристаллизованных минералов и прочих веществ, играющих важную роль в поглотительной способности почв, относятся аллофан, свободная кремнекислота, аморфные полуторные окислы (т. е. окислы железа и алюминия), различные кислоты и их соли (карбонаты, сульфаты, нитраты, хлориды, фосфаты кальция, магния, калия и натрия).
В почве кроме макроэлементов содержится некоторое количество микроэлементов: одних (йод, бор) больше, чем в литосфере, других (медь, кобальт) меньше, а некоторых примерно столько же (табл. 3.1). Основным источником микроэлементов в почве служат почвообразующие горные породы. Например, почвы, образовавшиеся на продуктах выветривания кислых пород (граниты, липариты, граниты-порфиры и др.), бедны никелем, кобальтом, медью, а почвы, образовавшиеся на продуктах выветривания основных пород (базальтах, габбро и др.), наоборот, обогащены этими элементами. Некоторые микроэлементы (I, В, Б, Бе, Аз) могут поступать в почву с газами из атмосферы, от вулканических извержений и с метеоритными осадками, причем для таких микроэлементов, как йод, фтор, эти источники являются основными.
3.1. Содержание микроэлементов в почве (А) и литосфере (Б), масс. %

Элемент

А

В

Элемент

А

В

Мп

8,5 ¦ 10"2

9 10"2

Си

2 10"3

1 10"2

И

2 10"2

2,7 10’2

Ъп

5 10"3

5 10"3

\?а

1 10"2

1,5 10"2

Со

О
ОО

3 1(Г3

В

1 10"3

3 КГ4

Мо

3 кг4

3 10"

N1

4 10"3

ОО
О

I

5 10-4

3 10‘5

Разные по гранулометрическому составу фракции минеральной части почвы резко различаются по содержанию различных минералов. В песке и крупной пыли преобладают кварц и полевые шпаты. А мелкодисперсные (lt;0,001 мм) илистая и коллоидная фракции состоят главным образом из вторичных алюмосиликатных минералов. В связи с этим различные механические фракции почвы существенно различаются по химическому составу.
В песчаных и пылеватых почвах кремния больше. С уменьшением размера частиц его содержание снижается, а количество алюминия, железа, калия, магния и фосфора возрастает (табл. 3.2). Высокодисперсная часть почвы содержит и гумус-показатель ее потенциального плодородия. Поэтому илистая и коллоидная фракции представляют наибольшую ценность для питания растений. Эти фракции обусловливают и поглотительную способность почвы. В них наиболее активно протекают процессы физической и физикохимической адсорбции.
3.2. Примерный химический состав разных механических фракций почвы,
масс. %


Фракции,
мм

81

А1

Ре

Са


К

Р

1,0-0,2

43,4

0,8

0,8

0,3

0,3

0,7

0,02

0,2-0,04

43,8

1,1

0,8

0,4

0,1

1,2

0,04

0,04-0,01

41,6

2,7

1,0

0,6

0,2

1,9

0,09

0,01-0,002

34,6

7,0

3,6

1,1

0,2

3,5

-

lt; 0,002

24,8

11,6

9,2

1,1

0,6

4,1

0,18

Почвы разного гранулометрического состава существенно различаются по физическим, физико-химическим и химическим свойствам. Неодинаков у них и минералогический состав.
Песчаные и супесчаные почвы состоят из кварца и полевых шпатов, суглинистые - из смеси первичных и вторичных минералов, а глинистые - преимущественно из вторичных глинистых минералов с примесью кварца.
Содержание основных зольных питательных веществ - кальция, калия, магния, железа и др. - также определяется степенью дисперсности почв, так как они содержатся в минеральной части почвы, фосфор и сера находятся как в минеральной, так и в органической части, а количество азота определяется уровнем гумусированности почв. Следовательно, почвы разного гранулометрического состава существенно различаются и по содержанию в них питательных элементов. Более тяжелые глинистые и суглинистые почвы богаче элементами питания, чем песчаные и супесчаные.



Поделиться